Background Statement for SEMI Draft Document 5558
Revision of SEMI MF928-0305 (Reapproved 0211)
TEST METHODS FOR EDGE CONTOUR OF CIRCULAR SEMICONDUCTOR WAFERS AND RIGID DISK SUBSTRATES

Note: This background statement is not part of the balloted item. It is provided solely to assist the recipient in reaching an informed decision based on the rationale of the activity that preceded the creation of this document.

Note: Recipients of this document are invited to submit, with their comments, notification of any relevant patented technology or copyrighted items of which they are aware and to provide supporting documentation. In this context, “patented technology” is defined as technology for which a patent has issued or has been applied for. In the latter case, only publicly available information on the contents of the patent application is to be provided.

SEMI has acquired the copyright to the silicon related standards issued by ASTM. These are being reformatted and, where necessary, revised to become SEMI standards. Until each of these standards is approved for publication as a SEMI standard, the ASTM standard will remain available for use.

Two types of modifications have been made in this revision of the standard. First, correct reference has been inserted for the research report covering the interlaboratory test of Method A. Second, the reference to the equivalent DIN standard has been removed because this is no longer supported by DIN. Changes from the existing text are indicated with underline for material to be added and strikeout for material to be deleted.

Review and Adjudication Information

<table>
<thead>
<tr>
<th>Task Force Review</th>
<th>Committee Adjudication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group: Int'l Test Methods TF</td>
<td>North America Silicon Wafer Committee</td>
</tr>
<tr>
<td>Date: Monday, Oct 28, 2013</td>
<td>Tuesday, Oct 29, 2013</td>
</tr>
<tr>
<td>Time & Time zone: 10:30 a.m. to 11:30 a.m. Pacific Time</td>
<td>1:00 p.m. to 5:00 p.m. Pacific Time</td>
</tr>
<tr>
<td>Location: SEMI HQ or Intel</td>
<td>SEMI HQ or Intel</td>
</tr>
<tr>
<td>City, State/Country: San Jose or Santa Clara, CA</td>
<td>San Jose or Santa Clara, CA</td>
</tr>
<tr>
<td>Leader(s): Murray Bullis (Materials & Metrology) Dinesh Gupta (STA) Noel Poduje (SMS)</td>
<td>Dinesh Gupta (STA)</td>
</tr>
<tr>
<td>Standards Staff: Kevin Nguyen (SEMI NA) knguyen@semi.org</td>
<td>Kevin Nguyen (SEMI NA) knguyen@semi.org</td>
</tr>
</tbody>
</table>

This meeting’s details are subject to change, and additional review sessions may be scheduled if necessary. Contact Standards staff for confirmation. Telephone and web information will be distributed to interested parties as the meeting date approaches. If you will not be able to attend these meetings in person but would like to participate by telephone/web, please contact Standards staff.

Check www.semi.org/standards on calendar of event for the latest meeting schedule.
SEMI Draft Document 5558
Revision of SEMI MF928-0305 (Reapproved 0211)
TEST METHODS FOR EDGE CONTOUR OF CIRCULAR SEMICONDUCTOR WAFERS AND RIGID DISK SUBSTRATES

1 Purpose

1.1 The edges of circular wafers of electronic materials are frequently required to be shaped after cutting the wafers from the ingot. Contouring the wafer edge reduces the incidence of chipping and minimizes epitaxial edge crown and photoresist edge bead during subsequent processing of the wafer. Similarly, edges of rigid disk substrates are frequently edge shaped.

1.2 The test methods described here provide means to determine that the wafer edge contour is appropriate to meet specifications, such as SEMI M1 or SEMI M9, which are intended to provide wafers avoiding the difficulties enumerated above.

2 Scope

2.1 These test methods provide means for examining the edge contour of circular wafers of silicon, gallium arsenide, and other electronic materials, and determining fit to limits of contour specified by a template that defines a permitted zone through which the contour must pass. Principal application of such a template is intended for, but not limited to, wafers that have been deliberately edge shaped.

NOTE 1: DIN 50441/2 is equivalent to Method B of this standard. It is the responsibility of DIN Committee NMP 221 — DIN 50441/2, Measurement of the Geometric Dimensions of Semiconductor Slices; Testing of Edge Rounding, is available from Beuth Verlag GmbH, Burggrafenstrasse 6, 10787 Berlin, Germany, Telephone: 49 30 2601-0, Fax: 49 30 2601-1263, Website: www.beuth.de.

2.2 Two test methods are described.

2.2.1 Method A is destructive and is limited to inspection of discrete points on the periphery, including flats. The contour of deliberately edge-shaped wafers may not be uniform around the entire periphery, and thus the discrete location(s) may or may not be representative of the entire periphery.

2.2.2 Method A is recommended for examining the edge profile of flatted regions of the wafer.

2.2.3 Method A is best suited for referee purposes.

2.3 Method B is nondestructive and suitable for inspection of all points on the wafer periphery except flats.

2.3.1 Method B is appropriate for routine process monitoring such as alignment of wafer edge grinders, routine quality control and incoming/outgoing inspection purposes. In view of the uncertainty of precisely locating the intersection of the contour and the wafer surface when carrying out Method B, use of this method for commercial transactions is not recommended unless the parties to the test establish the degree of correlation that can be obtained.

2.3.2 Method B may also be applied to the examination of the edge contour of the outer periphery of substrates for rigid disks used for magnetic storage of data; metallic rigid disk substrates cannot conveniently be cleaved.

NOTE 2: NOTE 1: Reference to wafers in the remainder of this standard shall be interpreted to include substrates for rigid disks unless the phrase “of electronic materials” is also included in the context.

2.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

NOTICE: SEMI Standards and Safety Guidelines do not purport to address all safety issues associated with their use. It is the responsibility of the users of the Documents to establish appropriate safety and health practices, and determine the applicability of regulatory or other limitations prior to use.
3 Limitations

3.1 In Method B, the profile of the parallel surfaces of the wafer may not be sharply focused at distances exceeding approximately 0.5 mm (0.020 in.) from the extreme wafer edge toward the wafer center. This uncertainty in the wafer surface location may cause inaccuracy in positioning the wafer with respect to template lines. It may also make it difficult to determine whether the wafer edge profile lies within the permitted zone at point B of the template (see Figure 1). These difficulties can be overcome by aligning a straight edge to the wafer surface by direct contact, observing the shadow extension in the sharply focused region, and extrapolating the straight line edge of the template reference. In applying this technique, exercise care to avoid damaging or contaminating the wafer surface.

3.1.1 This limitation renders Method B unsuitable for determining the distance between the front and back wafer surfaces. The edge contours near the front and back surfaces of the wafer must be inspected separately.

3.2 In Method B, attempting to view the complete wafer periphery, except flats, through wafer rotation may necessitate frequent focus adjustment due to variations in wafer roundness and fixturing precision, including wafer centering.

3.3 By either test method, any foreign material such as large particles or high spots on the wafer surface in the light path will present a false edge contour by masking the true contour shape.

3.4 It is not always feasible to provide a uniform radius or bevel to the edges of wafers because silicon, gallium arsenide, and many other electronic materials as well as glass disk substrates are both hard and brittle. Wear of grinding tools, process variations, and the presence of flats on the circumference of wafers cause practical contours to have varying shapes. For this reason, templates are used that define an allowed range.

3.5 If a television system is used, the user is cautioned that distortions in the horizontal and vertical deflections may occur (see ¶ 9.2.).

4 Referenced Standards and Documents

4.1 SEMI Standards

SEMI M1 — Specifications for Polished Monocrystalline Single Crystal Silicon Wafers
SEMI M9 — Specifications for Polished Monocrystalline Gallium Arsenide Slices

4.2 ANSI Standard

ANSI/ASQC Z1.4 — Sampling Procedures and Tables for Inspection by Attributes

NOTICE: Unless otherwise indicated, all documents cited shall be the latest published versions.

5 Summary of Test Methods

5.1 Both test methods employ optical means to project a shadow of the edge contour at substantial magnification on a screen.

5.1.1 In applying Method A (destructive) the sample wafer is cleaved or broken along a diameter. A sharply focused image of the cross section of the wafer is obtained over a sufficiently large region near the edge with the aid of an optical comparator or projection microscope.

5.1.2 In Method B (nondestructive) the unbroken wafer is back lighted with collimated (parallel) light such that a sharply defined shadow of the wafer edge is projected on a screen. In this test method the wafer is not altered in any way.

5.2 By either test method, the contour of the wafer edge profile image is compared to a template that has been mounted or projected on the screen. The template defines a permitted zone through which the edge contour must pass.

6 Apparatus

6.1 For Method A, an optical comparator or projection microscope capable of 100× magnification with viewing screen large enough to permit display of an area 1 mm by 1 mm (0.04 in. by 0.04 in.).

6.2 For Method B, a collimated light source (coherent or incoherent) and a television system, consisting of a camera, lenses to give 100× magnification and TV monitor capable of displaying a 1 by 1-mm (0.04 by 0.04-in.) area.

NOTE 3: NOTE 2: An adjustable camera mount, slice holding fixture, or lens adjustment is desirable for sharp focusing.

6.3 Fixture, for holding the wafer to be tested. The fixture must provide means for positioning the wafer such that the plane of the surface of the wafer is parallel to the viewing direction. The fixture should be arranged in such a way that its position and orientation in a plane perpendicular to the viewing direction can be adjusted conveniently, or alternatively, the template can be moved. Optionally, for Method B, the fixture can provide means for rotation of the wafer about its axis of symmetry. The design of the fixture for Method B should be such that the wafer may be loaded, held in position, and unloaded with minimum risk of contamination or damage to the wafer.

6.4 Template, having transparent regions defining the area through which the contour of the edge of the wafer must pass and a semi-transparent region bounding the space. An example of a template is given in Figure 1. Instructions for constructing templates are given in § 10.

6.5 Gage Block or Precision Rod, with dimensions approximately the same as the thickness of the wafer to be tested and accurately known for use in establishing the magnification of the apparatus.

6.6 Rule, 150 mm (6 in.) long with scale gradations of 0.5 mm (0.02 in.) or less.

7 Sampling

7.1 Unless otherwise specified, ANSI/ASQC Z1.4 shall be used. Inspection levels shall be agreed upon between the supplier and purchaser.

7.2 The number and location of the test points on the periphery of each wafer shall be agreed upon between the supplier and purchaser.

8 Specimen Preparation

8.1 For Method A, cleave or fracture the wafer along a diameter.

NOTE 4: NOTE 3: This may be conveniently accomplished by positioning the wafer over a small diameter rod and pressing downward on both sides. Alignment by eye is sufficient. If required by the sampling plan, cleave additional pieces along the edge of the wafer.
9 Determination of Magnification Factor

9.1 For Method A, adjust the comparator or microscope to the magnification to be used for the test. Using a gage block or precision rod of accurately known dimensions, follow the comparator or microscope manufacturer's instructions to establish object-to-image magnification to three significant figures.

9.2 For Method B, position a gage block on the fixture (see ¶ 6.3) such that the known dimension can be measured in the vertical direction on the screen using an appropriate rule. Measure the image vertical dimension to the nearest 0.02 in. (0.5 mm) and adjust magnification until the desired magnification for the test is obtained. Reposition the gage block such that the screen image of the known dimension can be measured in the horizontal direction. Adjust magnification to give the same value as the vertical.

NOTE 5-NOTE 4: Television systems may have distortions in either vertical or horizontal deflection circuits caused by improper settings of vertical or horizontal size or linearity. If magnification in both horizontal and vertical directions is not equal to the desired resolution, recalibration of the television system may be required.

10 Preparation of Template

10.1 Multiply each of the chosen or specified template coordinates by the magnification factor.

10.2 Prepare on transparent material a full-scale template having the dimensions calculated in ¶ 10.1 with a projected image accuracy of ±0.5 mm (±0.020 in.).

10.2.1 Mount the template on the screen such that the images of the wafer surfaces are parallel with the corresponding template lines. Alternatively, the template can be electronically generated or projected by the optical system.

11 Procedure

11.1 Method A

11.1.1 Mount the test specimen in the fixture with the cleaved or broken surface of the wafer facing the objective lens and approximately perpendicular to the viewing direction.

11.1.2 Adjust the comparator focus such that a sharp image of the wafer is seen on the screen.

11.1.3 Position the wafer by appropriate motion of the fixture so that the contour profile image is tangent to the overlay template at both the edge and front surface.

11.1.4 Determine whether or not the contour of the edge of the wafer between the points of tangency lies entirely within the permitted zone of the template. If the specification has other requirements, such as those relating to the specific shape of the profile, inspect the profile image for adherence to such conditions.

11.1.5 Repeat ¶ 11.1.3 and ¶ 11.1.4 with the opposite side of the contour profile image tangent to the overlay template at both the edge and back surface.

11.1.6 If the test specimen includes the full diameter, reverse the fixture on the comparator table to permit the edge contour at the opposite end of the wafer diameter to be seen on the screen and repeat ¶ 11.1.2 through ¶ 11.1.5.

11.1.7 If additional parts of the wafer were prepared as test specimens, repeat ¶ 11.1.1 through ¶ 11.1.5 for each.

11.1.8 Record as “passed” those wafers for which all observed edge contours lie entirely within the permitted zone and which meet all other specification requirements.

11.2 Method B

11.2.1 Mount a whole wafer in the fixture.

11.2.2 Adjust the focus of the apparatus to give the sharpest image of the extreme edge of the wafer as seen on the screen.

11.2.3 Position the wafer by appropriate motion of the fixture so that the contour profile image is tangent to the overlay template at both edge and front surface (see ¶ 3.1).
11.2.4 Determine whether or not the contour of the edge of the wafer between the points of tangency lies entirely within the permitted zone of the template. If the specification has other requirements, such as those relating to the specific shape of the profile, inspect the profile image for adherence to such conditions.

11.2.5 Rotate the wafer in the fixture while continuously observing the contour. Due to diameter and roundness tolerances, the specimen contour profile image may move with respect to the overlay template while rotating the specimen. Adjust wafer or template position and focus as required to assure proper judgement of template fit. Repeat ¶ 11.2.3 and ¶ 11.2.4 at specified points in accordance with the sampling plan.

NOTE 6: Flattened regions of the wafer periphery cannot be evaluated by this test method.

11.2.6 Repeat ¶ 11.2.3 through ¶ 11.2.5 with the opposite side of the contour profile image tangent to the overlay template at both the edge and the back surface.

11.2.7 Record as “passed” those wafers for which all edge contours examined lie entirely within the permitted zone and which meet all other specification requirements.

12 Report

12.1 Report as a minimum the following information:

12.1.1 Date of test,

12.1.2 Name of person conducting the test,

12.1.3 The lot number of other identification of the material,

12.1.4 Method used, A or B,

12.1.5 Position(s) on the wafer periphery that were examined,

12.1.6 The number of wafers in the lot,

12.1.7 The number of test wafers, and

12.1.8 The number of accepted wafers.

13 Precision and Bias

13.1 Although these test methods do not return a test result, an interlaboratory test was conducted to determine the reliability of the nondestructive Method B when applied to silicon wafers. In this test, a lot of 25, 125-mm diameter, edge profiled, silicon wafers was tested in accordance with Method B against the edge contour template and other requirements of SEMI M1. The wafers were measured by nine different organizations using several types of commercially available edge contour measuring instruments, all of which had similar optical systems. In one case the magnification used was 60× instead of 100× as specified in ¶ 6.2.

13.1.1 In no case was a wafer judged to be within the specification requirements by all participants. Only three wafers were judged by all participants to fail, but different participants reported different reasons for failure; the other 22 wafers were judged to pass by some and to fail by others, but again the same failure mode was not always reported. Most of the difficulty centered around determination of whether or not the edge profile extended further into the wafer than 0.508 mm (the specified location of point B in the SEMI template). Some participants reported failure on the front of the wafer, some on the back, and some reported that failure occurred because the contour passed inside point C. These results confirm the difficulties with locating the wafer surface indicated in ¶ 3.1. No participant reported use of the straight-edge technique suggested in ¶ 3.1, so the efficacy of that procedure was not evaluated in the test.

13.1.2 The results also confirmed the difficulties with interference from particulate contaminants. Several observers reported protrusions or sharp points on the wafer periphery, but these were not generally reported. Examination of the wafers under conditions in which the edge of the wafer could be accessed during the test showed that such apparent protrusions could be removed by blowing or wiping with lens cleaning tissue.
13.1.3 For more details, refer to the Research Report.²

13.2 At the recommended magnification, 100×, a dimension of 25 µm (0.001 in.) at the object plane produces a screen image of 2.5 mm (0.1 in.). The smallest size details of edge contours to be inspected by these test methods are of comparable dimensions.

14 Keywords
contour; edge contour; gallium arsenide; optical comparator; projection microscope; rigid disk; semiconductor; silicon; wafer

NOTICE: SEMI makes no warranties or representations as to the suitability of the standards set forth herein for any particular application. The determination of the suitability of the standard is solely the responsibility of the user. Users are cautioned to refer to manufacturer's instructions, product labels, product data sheets, and other relevant literature, respecting any materials or equipment mentioned herein. These standards are subject to change without notice.

By publication of this standard, Semiconductor Equipment and Materials International (SEMI) takes no position respecting the validity of any patent rights or copyrights asserted in connection with any items mentioned in this standard. Users of this standard are expressly advised that determination of any such patent rights or copyrights, and the risk of infringement of such rights are entirely their own responsibility.

² Available at no charge on request as SEMI AUX028-0813 from the SEMI web site at <http://www.semi.org/Standards/StandardsPublications>, Headquarters, 3081 Zanker Road, San Jose, CA, Telephone 408-943-7021, Fax: 408-943-7015, e-mail: jsliveria@semi.org. Request International Standards Research Report MF0928.